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Energy flow and radiation of linearized acoustic–gravity waves and propagation of
boundary waves in a gravitationally stratified isothermal compressible inviscid semi-
infinite fluid from a time-varying bottom boundary are investigated in the frequency–
wavenumber domain. Impedance Z, the ratio of the bottom vertical displacement to
the fluid pressure above it, is a function of the frequency and horizontal wavenumber
(ω, k) of the bottom boundary undulation. The amplitude and phase of Z at the
bottom boundary divide the (ω, k) coordinates into wave-type regimes. In contrast
to the pure acoustic or gravity wave case, the phase of Z is continuous but changes
quickly across the regime boundaries between the propagating waves and trapped
waves at the bottom, except for the Lamb wave branch along which the amplitude
is infinite and across which the phase jumps by π. The phase of Z determines the
efficiency of the work against the fluid by the deforming bottom boundary, showing
reduced upward wave-energy flow from the bottom near the regime boundaries in
which the phase of Z approaches ±π/2. For precise modelling of pressure waves and
the energy flow of acoustic and gravity waves in the fluid originating from a time-
dependent bottom-surface deformation with an apparent phase velocity comparable
to the speed of sound in the fluid, it is necessary to include the dependency on (ω, k)
of impedance Z.

1. Introduction
Low-frequency acoustic–gravity waves are generated from a bottom deformation

of the atmosphere by events such as crustal deformation, seismic waves at the
surface and tsunamis associated with large earthquakes. Watada et al. (2006) observed
atmospheric-scale air–ground coupling phenomena with collocated seismometers and
microbarometers, confirming that simple acoustic phase and amplitude relationships
between the pressure fluctuation and the seismic ground motion exists for a period
up to 50 s. At the same time, they also found theoretically that the air–ground
coupling relation would deviate significantly from the simple acoustic one at around
the acoustic cutoff frequency in a gravitationally stratified atmosphere.

In that study, the time-dependent topographic variation accompanying seismic
waves was modelled as travelling waves whose constant horizontal phase speed is
faster than the sound waves in air. For a purely acoustic case impedance Z, the
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spectral ratio of the bottom vertical velocity to the atmospheric pressure above it,
is a function of the horizontal phase velocity of the deforming bottom boundary. In
contrast to a pure acoustic case, impedance Z under gravity changes its amplitude
and phase as functions of the horizontal wavenumber and the frequency of the
time-varying bottom boundary undulation.

Radiating and trapped waves are generated from the motion of the bottom
boundary in a gravitationally stratified compressible fluid. Golitsyn & Klyatskin
(1967) studied the problem for radiating acoustic and gravity waves. Gravity waves
in a stratified fluid, such as Lee waves or mountain waves, are generated from a
moving bottom boundary with a topography and are a special case of more general
time-dependent bottom boundaries. Detailed histories of the study of the Lee wave
can be found in, for example, Gossard-Hooke (1975), Yih (1980) and Baines (1995).
On the other hand, we have rich examples of laboratory-scale application of radiating
and evanescent acoustic waves at the boundary (Williams 1999) without taking into
account the effect of gravity. Few studies have focused on the acoustic–gravity wave
excitation problem by the more general time-varying atmospheric bottom boundary
for a gravitationally stratified atmosphere. Golitsyn & Klyatskin (1967) studied the
radiating acoustic–gravity waves from the time-varying atmospheric bottom boundary,
but few have discussed evanescent waves including Lamb waves.

The present report shows that the amplitude and phase of Z characterize both
trapped and radiating waves, including acoustic, gravity and Lamb waves, in a
stratified isothermal fluid generated by the time-dependent bottom topography.
Emphasis is placed to show the continuous transition of Z in the frequency–
wavenumber domain from radiating waves to trapped waves including Lamb waves.
A radiating wave is sometimes called an internal wave or free wave. A trapped
wave is an external wave, evanescent wave or boundary wave. The wave energy is
concentrated near the ‘boundary’ and decays exponentially in one direction. We also
show that the vertical energy flow of acoustic–gravity waves is closely connected with
the phase of Z.

In this study, the horizontal phase velocity of the time-dependent bottom boundary
can be faster or slower than the sound waves and/or gravity waves in the fluid. Note
that in this study neither the fluid nor the boundary elements move as fast as the the
speed of sound in the fluid. Only the wave phase speed exceeds the speed of sound.

2. Formulation
We investigate the mechanical coupling of the linear waves in a semi-infinite

compressible stratified fluid and the bottom boundary in motion. Fluid particle
velocity is assumed to be much smaller than the phase velocity of waves. We assume
an isothermal inviscid fluid underlain by a flat horizontal bottom boundary in which a
time-dependent displacement field is imposed. The background fluid body is assumed
to be at rest and not under rotation. Fluid viscosity is neglected. Energy transport
by the heat conduction and radiation processes is not taken into account. Gill (1982)
is followed in the first few sections to clarify the derivation including the scaling
convention of variables. For example, Houghton (1986) adopts a different scaling
convention. The new developments in this paper start in § 2.4.

We take positive x- and z-axis along the horizontal and vertical upward directions. t
denotes the time; (u, w) are the horizontal and vertical components of fluid velocity;
ρ = ρo(z) + ρ ′(x, z, t) and p = po(z) + p′(x, z, t) are the density and pressure fields
each of which is expressed as the sum of the background vertical profile and a
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Figure 1. Problem geometry.

small Eulerian perturbation (figure 1). We start with the linear momentum and mass
conservation laws and the expression of adiabatic compression of the fluid. Neglecting
the products of small quantities, including horizontal and vertical fluid velocities and
the perturbations of density and pressure, we obtain

ρo

∂u

∂t
= −∂p′

∂x
, (2.1a)

ρo

∂w

∂t
= −∂p′

∂z
− ρ ′g, (2.1b)

∂ρ ′

∂t
+

∂(ρou)

∂x
+

∂(ρow)

∂z
= 0, (2.2)

c2
s =

(
∂p

∂ρ

)
s

. (2.3)

Equation (2.3) can be rewritten in terms of Lagrangian perturbations as

c2
s

∂δρ

∂t
=

∂δp

∂t
, (2.4)

where g is the constant gravity and cs(z) is the speed of sound. In terms of Eulerian
perturbations, the above equation is

c2
s

(
∂ρ ′

∂t
+ w

dρo

dz

)
=

∂p

∂t
+ w

dpo

dz
=

∂p′

∂t
− wρog. (2.5)

The background state

dpo

dz
= −ρog (2.6)

is satisfied by ρo(z) and po(z). Eliminating ρ ′ from (2.1), (2.2) and (2.5), we obtain
the relationship between the Eulerian pressure perturbation p′ and vertical upward
velocity w as

ρo

∂

∂t

(
∂

∂z
− g

c2
s

)
w =

(
∂2

∂x2
− 1

c2
s

∂2

∂t2

)
p′, (2.7a)(

∂2

∂t2
+ N2

)
w = − 1

ρo

∂

∂t

(
∂

∂z
+

g

c2
s

)
p′, (2.7b)
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where buoyancy frequency N for a compressible fluid is defined by

[N(z)]2 = −g

(
1

ρo

dρo

dz
+

g

c2
s

)
. (2.8)

By scaling the horizontal and vertical ground velocities and pressure perturbation as

U = ρo
1/2u, W = ρo

1/2w, P = ρo
−1/2p′, (2.9)

we obtain a set of equations:

∂U

∂t
= −∂P

∂x
, (2.10a)

∂

∂t

(
∂

∂z
W − Γ W

)
=

(
∂2

∂x2
− 1

c2
s

∂2

∂t2

)
P, (2.10b)

∂2

∂t2
W + N2W = − ∂

∂t

(
∂P

∂z
+ Γ P

)
, (2.10c)

where Γ is defined by

Γ (z) =
1

2ρo

dρo

dz
+

g

c2
s

. (2.11)

These equations are often found in textbooks (e.g. Gossard-Hooke 1975). Note that Γ

should not be confused with the adiabatic lapse rate. Both Γ and N2 can be positive,
negative or zero, depending on the stratification of the compressible fluid (Beer 1974).
The wave energy equation is derived from linearized equations (2.1), (2.2) and (2.5)
(Gill 1982, p. 170):

∂

∂t

[
1

2
ρo(u

2 + w2) +
1

2

p′2

ρoc2
s

+
1

2
ρoN

2h2

]
+

∂

∂x
(p′u) +

∂

∂z
(p′w) = 0, (2.12)

where h is vertical displacement defined by h =
∫

w dt . We denote the inside of [ ]
in (2.12) as E, the wave energy density per unit volume, including the kinetic and
acoustic energies and energy associated with buoyancy. Equation (2.12) is rewritten
as an energy conservation law (Lighthill 1978, p. 294):

∂E/∂t + ∇ · I = 0, (2.13)

where the wave energy flow vector I is defined by

I = (p′u, p′w). (2.14)

The wave energy flow and density have a general relationship with each other through
group velocity vector vg of dispersive waves (Whitham 1974, p. 386) such that

I = Evg. (2.15)

Equation (2.15) is a convenient expression with which to evaluate the energy flow
transported by the waves. In the following sections this equation is confirmed to hold
for acoustic–gravity waves in a gravitationally stratified isothermal atmosphere.

2.1. Isothermal atmosphere

Hereafter we consider an artificial isothermal atmosphere as an example of stratified
compressible fluid. Sound velocity cs becomes constant for an isothermal atmosphere.
Let γ = cp/cv be the ratio of specific heat of the dry atmosphere, where cp and
cv are the specific heat at constant pressure and constant volume, respectively.
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For an isothermal gravitationally stratified atmosphere with a constant scale height
H = c2

s /γg, buoyancy frequency N is a constant number expressed from (2.8) as

N2 = g

(
1

H
− g

c2
s

)
, (2.16)

and Γ in (2.11) is also a constant written as

Γ =
1

2H
− N2

g
=

1

2

(
g

c2
s

− N2

g

)
. (2.17)

The last identity is obtained by eliminating H used in (2.16). Other miscellaneous
expressions are found in Appendix A.

2.2. Dispersion relation

Scaled pressure P and scaled horizontal and vertical velocities (U, W ) have a plane-
wave solution with a common angular frequency and wavenumber in the form
exp (i(kx + mz − ωt)). Substituting these in (2.10) leads to equations

ωU = kP, (2.18a)

ω(m + iΓ )W =

(
ω2

c2
s

− k2

)
P, (2.18b)

(ω2 − N2)W = ω(m − iΓ )P, (2.18c)

from which we obtain the dispersion relation of waves in the atmosphere in the form

c−2
s ω4 − ω2(k2 + m2 + N2/c2

s + Γ 2) + k2N2 = 0 (2.19)

or equivalently

m2 =

(
k2 − ω2

c2
s

)(
N2

ω2
− 1

)
− Γ 2. (2.20)

This is also written as (Houghton 1986, p. 108):

m2 = k2

(
N2

ω2
− 1

)
+

ω2 − ω2
a

c2
s

, (2.21)

where the acoustic cutoff frequency ωa is defined by

ω2
a = N2 + c2

s Γ
2. (2.22)

Using (2.16) and (2.17), ωa turns out to be

ωa =
cs

2H
. (2.23)

2.3. Group velocity

We evaluate vertical wavenumber m by (2.20) or (2.21) for a given (ω, k) pair; (ω, k) as
well as m2 are assumed to be real. Negative and positive m2 correspond to propagating
waves and evanescent waves in the vertical direction, respectively. The sign of m is
chosen from a physical consideration of the direction of the group velocity of the
waves.

For evanescent waves in regimes E+ and E− of figure 2, group velocity is not
defined from the dispersion relation in (2.20). In these regimes, since the vertical
wavenumber is imaginary, all fluid elements in a vertical column move with the same
phase, and no waves propagate vertically. In the horizontal direction, the wave phase
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Figure 2. Wavenumber–frequency regimes characterized by (mH )2. Abscissas are horizontal
wavenumber k normalized by scale height H ; ordinates are angular frequency ω normalized
by the acoustic cutoff frequency ωa . (a) Contour map of the square of the normalized vertical
wavenumber, (mH )2, as a function of the normalized horizontal wavenumber and normalized
frequency expressed by (2.20) and (2.21) with constants in Appendix A. (b) Regimes A, G,
E+ and E− are separated along the m2 = 0 and m2 = −Γ 2 lines. Dashed lines are along
constant horizontal phase speeds, normalized by ωaH = cs/2. Thus normalized phase speed
2 corresponds to cs , the speed of sound; m2 are positive in regimes A and E and negative
in regimes E+ and E−. Regimes E+ and E− are separated along a constant phase line
(ω/ωa)/(kH ) = 2 along which m2 = − Γ 2. (c), (d ) Same as (a) and (b) for a non-isothermal
case in which ωa =0.5N ((c) and (d ) are only for illustration purpose and are not discussed
further).

is (kx − ωt), the same as the bottom-imposed deformation. The phase speed ω/k and
group speed ∂ω/∂k are also the same as those of the bottom-imposed deformation
and are not calculated from the wave dispersion relations in (2.20).

The group velocity of propagating waves in the gravitationally stratified isothermal
atmosphere is formally expressed from (2.19) and (2.21):

vg = (vgx
, vgz

) =

(
∂ω

∂k
,
∂ω

∂m

)
=

c2
s ω

ω4 − k2N2c2
s

(k(ω2 − N2), mω2). (2.24)
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The sign of vgz, the vertical component of group velocity, is determined by the
denominator in (2.24) and m. When the denominator ω2 − kNcs = 0, the sign of m2 is
always negative, since from (2.20) and ω2 = kNcs , the following inequation holds:

m2(ω, k) =

(
k2 − kNcs

c2
s

) (
N2

kNcs

− 1

)
− Γ 2 = −

(
k − N

cs

)2

− Γ 2 < 0. (2.25)

This inequation proves that in the (ω, k) coordinates, the entire ω2 − kNcs = 0 line
lies in the region of evanescent waves in the vertical direction, i.e. in regimes E+ and
E−. Thus in regimes A and G, the group velocity defined by (2.24) takes non-zero
finite values.

The wave energy propagates along the direction of the group velocity vector at the
speed of the group velocity. In this study, we assume that wave energy is provided
by the motion of the bottom boundary. If m is real the sign of vgz must always be
positive. In propagating acoustic wave regime A, the denominator of vgz in (2.24) is
positive, and m in the numerator must also be positive. In propagating gravity wave
regime G, the denominator of vgz is negative, and hence m in the numerator must
also be negative.

In evanescent regimes E+ and E−, the energy is bounded towards the bottom

boundary, and i
√

−m2 is the right choice between +i
√

−m2 and −i
√

−m2 for m2 < 0
because we assume spatial dependency in the form of exp(imz).

2.4. Wave energy

Wave energy density E in (2.12) in both propagating acoustic regime A and gravity
regime G is expressed with the scaled variables in (2.9) as

E(ω, k) =
1

2

[
UU ∗ + WW ∗ +

PP ∗

c2
s

+
N2

ω2
WW ∗

]
(2.26a)

= PP ∗
(

N2k2

ω2
− ω2

c2
s

)/
(N2 − ω2) (2.26b)

= WW ∗
(

N2k2

ω2
− ω2

c2
s

)/(
k2 − ω2

c2
s

)
. (2.26c)

We have used (2.18) to eliminate U , P and W . Each asterisk denotes the complex
conjugate of the variable. Because horizontal wavenumber k and frequency ω are
both real, energy density E is always real, and no imaginary part exists for all (ω, k).
See Appendix B for details. The components of the wave energy flow in regimes A
and G are computed from (2.24) and (2.26):

E vgx =
k

ω
PP ∗ = PU ∗, (2.27a)

E vgz = − mω

N2 − ω2
PP ∗ =

m

m + iΓ
PW ∗ =

m

m − iΓ
P ∗W

= Re(PW ∗) =
1

2
(PW ∗ + P ∗W ). (2.27b)

The wave energy flow, as we expected in (2.15), is the product of pressure and fluid
velocity. Note that, if energy flow has a complex part, the observable quantity should
be the real part of the complex variables (Blackstock 2000, p. 49). Wave energy
defined by (2.26) and wave energy flow defined by (2.27) have a cos2(ωt) dependence
in time. After taking the average over a time period much longer than the wave
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period, the time dependence cos2(ωt) is replaced by 1/2; P and U are always in
phase, as seen from (2.18), and the horizontal energy flow PU ∗ is real; PW ∗ has an
imaginary component expressing a phase shift between W and P for real m(ω, k)
in regimes A and G. When m(ω, k) becomes imaginary in regimes E+ and E−,
P and W are in phase quadrature; i.e. the phases of two variables are shifted by
±π/2, as seen in (2.18), implying that the pressure change is positively or negatively
proportional to the vertical displacement and that no energy flow exists in the vertical
direction.

2.5. Impedance

Impedance Z, the ratio between the vertical velocity and pressure at the boundary,
(also called transfer function in Watada et al. 2006), normalized by air density and
the speed of sound, is derived from (2.18) as

Z(ω, k) ≡ p′

ρocsw
=

P

csW
=

2ω/ωa

ω2

ω2
a

− 4k2H 2

H (D(m) + iΓ ) (2.28a)

=
(ω2 − N2)/ω2

a

2
ω

ωa

H (D(m) − iΓ )
. (2.28b)

The last identity is verified from the dispersion relation in (2.20), and D(m) is defined
by

D(m) =

⎧⎪⎨
⎪⎩

√
m2 for regime A,

−
√

m2 for regime G,

i
√

−m2 for regimes E+, E−,

(2.29)

corresponding to propagating acoustic waves, propagating gravity waves and trapped
waves along the bottom boundary in descending order in (2.29), respectively. The
sign of D(m) is chosen as discussed in § 2.3. Because propagating gravity waves
with energy flow upward in an incompressible fluid have the relationship (see
Appendix C)

p′

ρow
=

N

k

√
1 −

( ω

N

)2

, (2.30)

another non-dimensional impedance is defined:

Z′(ω, k) ≡ kp′

ρoNw
=

k

N

P

W
=

2ωakH

N
Z(ω, k). (2.31)

This form of impedance in (2.31) would be suited for the study of propagating gravity
wave in region G, where impedance expressed by Z′ in (2.31) is flat compared with
the one expressed by impedance Z in (2.28). The impedance normalization factors
– 1/(ρocs) for propagating acoustic waves and k/(ρoN) for propagating gravity waves –
will also be justified by the study of asymptotic forms of impedance in § 3.1.2. Two
impedance expressions are correct for all (ω, k), and the choice between (2.28) and
(2.31) depends on the problem to study.

Watada et al. (2006) examined only seismic waves and obtained the transfer
function of regimes A and E+; the horizontal phase velocity of the bottom boundary
deformation is faster than the speed of sound in air. The result of Watada et al.
(2006) cannot be applied to the radiation of gravity waves from the bottom boundary
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(2.29). Equation (2.28), or (2.31), is the basic equation of this paper and is used to
compute the impedance for all (ω, k). The positive and negative signs in (2.29) for
acoustic and gravity waves should be taken into account in modelling the pressure
waves in the atmosphere induced by the time-varying bottom boundary. The phase
and amplitude of impedance in (2.28), together with the wave types, are discussed in
detail in the next section.

3. Results
3.1. Impedance

The functional form of (2.28) and (2.29) exhibits a few features of impedance Z(ω, k).
First, the amplitude of the impedance becomes infinite when the horizontal phase
velocity ω/k is equal to the speed of sound cs =2Hωa in a fluid, i.e. Lamb waves,
for all wavelengths. No vertical motion exists, and the phase of Z is indefinite in
Lamb waves. Across the Lamb wave branch, the phase of Z jumps by π. Second,
the amplitude of impedance is reduced but not to zero along the m =0 lines, which
are the regime boundaries between propagating waves and trapped waves. Third, the
phase of Z is determined by D(m) because Γ is a constant value for an isothermal
atmosphere. The vertical wavenumber m is constant along the constant phase line of
Z. For all m2 � 0 the phase of Z becomes a constant value – π/2 or −π/2 – depending
upon regime E+ or E−, respectively. Pressure change and vertical displacement are
in phase and out of phase, in regime E+ and in regime E−, respectively.

In figures 3 and 4 impedance Z as a function of the horizontal wavenumber
and frequency of a time-dependent bottom boundary is plotted for an isothermal
atmosphere, using the atmosphere-like parameters in Appendix A. The plot confirms
the features described above. The phase of impedance Z is continuous across the
regime boundaries along m =0 between the propagating wave and the trapped wave,
i.e. across the boundary between A and E+ and that between G and E−.

3.1.1. Comparison with a pure acoustic wave case and an incompressible gravity
wave case

For purely acoustic waves, m =0 corresponds to the waves propagating in the
direction parallel to the bottom boundary at the speed of sound. If the horizontal
phase speed of the time-dependent boundary undulation changes slightly near the
speed of sound, the phase of the induced pressure relative to the phase of the
bottom boundary deformation jumps abruptly by π/2. For acoustic waves with a
horizontal phase speed faster than the speed of sound, i.e. vertically and horizontally
propagating waves, bottom pressure and vertical upward velocity are in phase. For
vertically evanescent acoustic waves with a horizontal phase speed slower than
the speed of sound, bottom pressure and vertical upward displacement are out of
phase.

For incompressible waves under gravity, m =0 corresponds to the purely vertical
motion of an entire vertical column at buoyancy frequency N . The bottom pressure
and vertical upward velocity of the bottom boundary are in phase below the buoyancy
frequency, and bottom pressure and vertical displacement are out of phase above the
buoyancy frequency. By crossing the buoyancy frequency, we encounter a bump by
π/2 in the phase of Z.

The combined effects of compressibility and stratification cause the impedance
phase steps to disappear in the (ω, k) coordinates, except for the Lamb wave branch.
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Figure 3. Theoretical impedance for an isothermal atmosphere, as expressed in (2.28). (a), (b)
Contour maps of the amplitude and phase of the impedance, respectively. (c), (d ) Amplitude
and phase are evaluated along the constant horizontal phase speed lines in figure 2, respectively.
The dashed short lines near frequencies 0.1 and 10.0 in (c) indicate the asymptotic value of
each constant phase speed in table 2.

Figure 3(d ) shows the continuous transition of the phase of Z across the regime
boundaries along various constant horizontal phase speed lines.

3.1.2. Asymptotic forms of impedance

Impedance in (2.28) should have simple asymptotic forms by taking the limits of
the variables (ω, k). By assuming |m2| � Γ , we approximate (2.20) and (2.18) to
obtain

ωmW =

(
ω2

c2
s

− k2

)
P, (3.1a)

(ω2 − N2)W = ωmP (3.1b)
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Table 1. Approximated impedance for |m2| � Γ .
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Figure 4. Theoretical impedance expressed in (2.31). (a) Contour map of amplitude; (b)
amplitude along constant horizontal phase speeds. The phase plot is the same as in figure 3(b).

and a dispersion relation

m2 =

(
ω2

c2
s

− k2

) (
1 − N2

ω2

)
. (3.2)

Using approximated equations (3.1) and (3.2) and the same discussion of the sign of
m in § 2.3, we rewrite the impedance in (2.28) to obtain table 1. Further, we obtain
asymptotic forms of impedance for the limiting cases of variables N/ω and csk/ω

(table 2).
Figure 3(c) shows that the impedance amplitude approaches the values calculated

from the asymptotic forms in table 2 as the frequency increases and decreases along
constant horizontal phase speed lines. The phase approaches 0 or ±π/2, depending
upon the regimes in figure 2(b).

Note that the impedance normalization factors used in Watada et al. (2006) and
(2.30) correspond to the limiting cases of regime A with N/ω → 0, cs/(ω/k) = finite
and regime G with N/ω = finite, cs/(ω/k) → ∞, respectively.
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Table 2. Asymptotic forms of impedance.

3.2. Scale height

Eulerian pressure perturbation p′ and velocity (u, w) are expressed using D(m) in
(2.29):

p′ = ρ1/2
o P = Poρ

1/2
oo exp(−z/2H ) exp(i(kx + D(m)z − ωt)), (3.3)

(u, w) = ρ−1/2
o (U, W ) = (Uo, Wo)ρ

−1/2
oo exp(+z/2H ) exp(i(kx + D(m)z − ωt)), (3.4)

where Po and (Uo, Wo) are constant scaled pressure and velocity at the boundary, res-
pectively; ρo(z) = ρoo exp(−z/H ), where ρoo is the density of the atmosphere at the
bottom surface.

In propagating wave regimes, scale height is constant. In evanescent regimes, scale
height changes depending on the m2 value in figure 2(a). If (mH )2 > − 1/4 is satisfied
for an evanescent wave, as altitude increases the wave energy density decreases, but
the wave velocity increases exponentially. Thus, evanescent waves can be observed at
high altitude as a large fluid velocity perturbation. Along Lamb waves, m2 is constant,
−Γ 2. The Lamb waves can be considered a special case of boundary waves without
boundary deformation.

3.3. Work and energy flow by bottom stress

In propagating regimes A and G, the pressure p′ and horizontal fluid velocity u are
in phase, and there is always a wave energy flow along the boundary expressed by
p′u, where the overscore is the time average of the variable. Since

P

W
=

PW ∗

WW ∗ (3.5)

holds, the phase of p′w is the same as that of impedance Z in (2.28) and will
be evaluated for all (ω, k). Compared with a pure acoustic or gravity wave case,
the vertical energy flow expressed by p′w has reduced efficiency near the regime
boundaries because the phase difference between p′ and w comes close to being
shifted by ±π/2 (figures 3(b) and 5).

In evanescent regimes E+ and E−, horizontal energy flow p′u exists, but vertical
energy flow completely vanishes because p′ and w are in quadrature, and bottom
deformation does not work against the atmosphere above it. Physically, the undulating
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bottom boundary horizontally stretches and shortens the atmospheric bottom layer
locally within the depth of the scale height and temporally within the time scale of
the wave period. The horizontal wavenumber and the frequency of the undulating
boundary do not satisfy the conditions for the propagating waves m2 � 0; thus only
boundary waves are generated.

4. Concluding remarks
A real gravitationally stratified fluid, such as atmosphere, is not isothermal. In such

a fluid, temperature decreases or increases as altitude increases, and the dispersion
relation of internal and external waves will be altered from that of an isothermal fluid
(Beer 1974). A shear flow will also change the propagation of waves. Studies of internal
gravity waves in a Boussinesq inviscid adiabatic fluid revealed that gravity waves
are dissipated and reflected at a critical height with a shear flow (Booker & Bretherton
1967). The present study does not consider shear flow. The realistic stratification of
the temperature (or buoyancy frequency N(z)) and wind speed in the atmosphere is
known to significantly change the forms of the dispersion branches and the boundaries
between different regimes in the (ω, k) plane (e.g. Gossard-Hooke 1975). Shear flow
and temperature effects on the propagation of radiated or trapped acoustic–gravity
waves from the bottom boundary are left for future studies. Realistic temperature and
density models of the atmosphere are needed to correctly compute the propagation
of pressure disturbances.

Mountain wave analysis of a stratified incompressible fluid predicts that the relative
phase between pressure and displacement changes by π/2 when the frequency crosses
the ω = N line (e.g. Gill 1982; Cushman-Roisin 1994). This study extends the mountain
wave analysis for the cases of a horizontal phase speed of deformation larger or
smaller than the speed of sound. For cases in which the horizontal phase speed
is below the speed of sound, and the wave frequency is larger than the buoyancy
frequency, this study shows that an upward deformation of the boundary causes
a negative pressure change, similar to the case of the mountain waves that have
a frequency larger than the buoyancy frequency. When the horizontal phase speed
exceeds the speed of sound, but the wave frequency is lower than the acoustic cutoff
frequency, the upward deformation of the boundary accompanies a pressure increase.
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It should be noted that regimes E+ and E− have an infinite horizontal wavenumber
and frequency range, both extending along the (ω/ωa)/(kH ) = 2 regime boundary in
figure 3. In regimes E+ and E−, pressure increases as the bottom boundary deforms
upward and downward, respectively.

This study is limited to the linear waves. Under linear wave approximation, deep-
water surface gravity waves of the ocean is in regime E−, and no vertical acoustic
wave propagation is expected. Guo (1987), Arendt & Fritts (2000) and Waxler &
Gilbert (2006) demonstrated, however, that acoustic waves in air can be radiated from
ocean surface gravity waves through the nonlinear effects of surface waves. Linear
approximation used in this paper may become invalid near the regime boundaries,
where the horizontal phase speed becomes close to zero, for instance when ω is
close to N and, therefore, comparable in value to the fluid particle velocities. The
nonlinear case requires a particular consideration and imposes certain restrictions on
the applicability of the linear approximation assumed in this study.

When we model the atmospheric waves generated by a tsunami, defined as a long
gravity wave in the ocean whose horizontal phase velocity is less than the atmospheric
speed of sound, the boundary condition at the ocean surface depends on where the
tsunami dispersion branch goes in regimes G and E−. Long-period tsunami in regime
G generates gravity waves in the atmosphere (Golitsyn & Klyatskin 1967). The
boundary condition of atmospheric waves excited by seismic waves, whose horizontal
propagation speed are in general faster than the atmospheric speed of sound, depends
on the wave period. Waves with a frequency larger or smaller than the acoustic cutoff
frequency are in regime A or E+, respectively. If the ocean depth were greater than
11 000 m, then the phase speed of a tsunami would exceed the speed of sound in
the atmosphere. The dispersion branch of this supersonic tsunami crosses the Lamb
wave branch, and the boundary condition of the supersonic tsunami switches to the
same one for seismic waves.

The source of atmospheric acoustic–gravity waves excited by the deformation of
the bottom boundary is often modelled as a pressure source at the bottom related
by p′ = ρocsw (e.g. Mikumo et al. 2008). This study shows that, in an isothermal
atmosphere, this approximation is good only for acoustic waves with horizontal
phase speed much faster than acoustic waves. The amplitude and phase of the
pressure field above the deforming bottom depends on whether the horizontal phase
speed is faster or slower than the speed of sound and on whether the oscillation
period is longer or shorter than the buoyancy period of the atmosphere. For precise
modelling of the amplitude and phase of an atmospheric disturbance originated by a
time-dependent bottom surface deformation imposed by seismic waves and tsunamis
with a horizontal phase velocity comparable to the speed of sound in air, dependence
on (ω, k) of impedance Z should be taken into account.

I would like to acknowledge the useful comments of Dr S. Takehiro, Dr H. Shimizu
and Dr K. Nakajima. I thank an anonymous referee for bringing Golitsyn & Klyatskin
(1967) to my attention. This research is supported by a Grant in Aid for Science
Research (C) 18540413 from the Ministry of Education, Culture, Sports, Science, and
Technology of Japan.

Appendix A. Miscellaneous expressions
Equation of the state of an ideal gas and adiabatic atmospheric process results in

a relationship between the specific heat ratio γ, pressure p, density ρ and speed of
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sound cs ,

c2
s =

γp

ρ
. (A 1)

Derivations are found in textbooks (e.g. Gill 1982). In an isothermal atmosphere, a
constant scale height H is defined by

1

H
= − 1

p

dp

dz
. (A 2)

From (A 1), (2.6), (A 2) and p = ρRT , where R is the gas constant, speed of sound is
rewritten as

c2
s = γRT = γgH. (A 3)

Thus the acoustic cutoff frequency ωa , Γ and the buoyancy frequency N are expressed
using γ, H and g:

ωa =
cs

2H
=

1

2

√
γg

H
, (A 4a)

N2 = g

(
1

H
− g

c2
s

)
=

(γ − 1)g

γH
=

4(γ − 1)

γ2
ω2

a, (A 4b)

Γ =
1

2H
− N2

g
=

2 − γ

2γH
. (A 4c)

For a diatomic gas, γ = 1.4. If we adopt atmosphere-like parameters, H = 8.0 km, g =
9.8 m s−2, R = 287.04 J kg−1K−1, then ωa; N = 0.9035ωa; and Γ are derived using (A 4)
and can be used to plot figures 2–5.

Appendix B. Computation of acoustic–gravity wave energy and wave energy
flow

A wave is an oscillatory phenomenon in space and time and is often modelled as
complex variables having exponential dependence in the form exp(i(kx + mz − ωt)).
Wave energy and energy flow are defined by the products of two variables, as seen
in (2.12) and (2.14). The acoustic–gravity wave energy density per unit volume in
(2.12) is expressed as

E(ω, k, z) =
1

2

[
ρo(uu∗ + ww∗) + ρoN

2hh∗ +
p′p′∗

ρoc2
s

]
. (B 1)

With the scaled variables in (2.9), the wave energy density per unit volume equa-
tion (B 1) for propagating waves (regimes A and G) is also written as

E(ω, k) =
1

2

[
UU ∗ + WW ∗ +

PP ∗

c2
s

+
N2

ω2
WW ∗

]
. (B 2)

The z dependence of E(ω, k) disappears because of the scaling in (2.9). For evanescent
waves (regimes E+ and E−) we adopt a different scaling of variables so that each
term in (B 1) has a common dependence on z:

U = ρoo
MHρo

1/2−MHu, W = ρoo
MHρo

1/2−MHw, P = ρoo
MHρo

−1/2−MHp′, (B 3)

where M =
√

−m2 and ρoo = ρo(0). The complex conjugate of (2.18b) gives

−iω(im∗ + Γ )W ∗ =

(
ω2

c2
s

− k2

)
P ∗. (B 4)
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From (2.18c) and (B 4) we have the following relations:

(N2 − ω2)(im∗ + Γ )WW ∗ =

(
k2 − ω2

c2
s

)
(im + Γ )PP ∗, (B 5)

(−ω2 + N2)

(
k2 − ω2

c2
s

)
WP ∗ = −ω2(im + Γ )(im∗ + Γ )PW ∗. (B 6)

Applying (2.18a) and (B 5) to (B 2) (for propagating waves m is real), we reach (2.26).
For evanescent waves im = −M is real; we reach

E(ω, k, z) =
1

2
e−2Mz

[
k2

ω2
+

1

c2
s

+

(
1 +

N2

ω2

)(
k2 − ω2/c2

s

N2 − ω2

)(
−M + Γ

M + Γ

)]
PP ∗,

(B 7)

which is also real. Thus, energy density is real for all (ω, k), and we do not need to
take the real part of energy density. Wave energy flow defined by (2.14) is formally
expressed as

I(ω, k) = Re(p′u∗, p′w∗) = (PU ∗, Re(PW ∗)). (B 8)

From (2.18a), U and P are in phase so that horizontal wave energy flow PU ∗ is real
for all (ω, k), and we do not take the real part of PU ∗. Strictly speaking, P and W

are not in phase for all (ω, k), so we should take the real part of PW ∗.

Appendix C. Impedance for gravitationally stratified incompressible fluid
In a vertically stratified incompressible fluid with a constant buoyancy frequency

N , the linearized equation of motion in the horizontal component is

ρo

∂u

∂t
= −∂p′

∂x
. (C 1)

The incompressibility is expressed as

∂u

∂x
+

∂w

∂z
= 0. (C 2)

By assuming a plane wave solution exp(i(kx + mz − ωt)), we have

ωρou = kp′, (C 3)

ku + mw = 0. (C 4)

The dispersion relation of the incompressible fluid has a dispersion relation (Gill
1982, p. 131),

ω2 = N2 k2

k2 + m2
. (C 5)

After considering the sign of m as we discussed in § 2.3, we have for gravity waves
propagating upward

m = −k

√
1 −

( ω

N

)2

. (C 6)

From (C 3), (C 4) and (C 6), we have (2.30).
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